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There are two major categories of channel codes: block and convolutional. This chapter deals 

mainly with convolutional coding. A linear block code is described by two integers, n and k, 

and a generator matrix or polynomial. The integer k is the number of data bits that form an 

input to a block encoder. The integer n is the total number of bits in the associated codeword 

out of the encoder. A characteristic of linear block codes is that each codeword n-tuple is 

uniquely determined by the input message k-tuple. The ratio kln is called the rate of the code 

— a measure of the amount of added redundancy. A convolutional code is described by three 

integers, n, k, and K, where the ratio k/n has the same code rate significance (information per 

coded bit) that it has for block codes; however, n does not define a block or codeword length as 

it does for block codes. The integer K is a parameter known as the constraint length; it 

represents the number of k-tuple stages in the encoding shift register. An important 

characteristic of convolutional codes, different from block codes, is that the encoder has  
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memory — the n-tuple emitted by the convolutional encoding procedure is not only a function 

of an input k-tuple, but is also a function of the previous K - 1 input k-tuples. In practice, n and 

k are small integers and K is varied to control the redundancy. 

 

 

1.1 CONVOLUTIONAL ENCODING 
 

Figure 1.1 represents the block diagram of a convolutional encode/decode and 

modulator/demodulator part in a typical communication link. The input message source is 

denoted by the sequence m = m1, m2, ……… , mi , …… , where each mi represents a 

binary digit (bit). We shall assume that each mi is equally likely to be a one or a zero, and 

independent from digit to digit. Being independent, the bit sequence lacks any redundancy; 

that is, knowledge about bit mi gives no information about mj (i ≠ j). The encoder transforms 

each sequence m into a unique codeword sequence U = G (m). Even though the sequence m 

uniquely defines the sequence U, a key feature of convolutional codes is that a given k-tuple  
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 Figure 1.1   Encode/decode and modulator/demodulator part in a typical communication link. 
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within m does not uniquely define its associated n-tuple within U since the encoding of each 

k-tuple is not only a function of that k-tuple but is also a function of the K - 1 input k-tuples 

that precede it. The sequence U can be partitioned into a sequence of branch words: U = U1, 

U2, ... , Ui , .... Each branch word Ui is made up of binary code symbols, often called channel 

symbols, channel bits, or coded bits; unlike the input message bits the code symbols are not 

independent.  
 

In a typical communication application, the codeword sequence U modulates a waveform 

s(t). During transmission, the waveform s(t) is corrupted by noise, resulting in a received 

waveform s(t) and a demodulated sequence Z = Z1, Z2, . . . , Zi  , . . . , as indicated in Figure 

1.1. The task of the decoder is to produce an estimate                     , f the 

original message sequence, using the received sequence Z together with a priori knowledge 

of the encoding procedure. 

,....mmmm =                     o,.......,, 21 i
))))

 

A general convolutional encoder, shown in figure 1.2, is mechanized with a kK-stage shift 

register and n modulo-2 adders, where K is the constraint length. The constraint length 
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Figure 1.2   Convolutional encoder with constraint length K and rate k/n. 

 

represents the number of k-bit shifts over which a single information bit can influence the 

 3



Chapter1 -  Channel Coding and Viterbi Algorithm 

encoder output. At each unit of time, k bits are shifted into the first k stages of the register; all 

bits in the register are shifted k stages to the right, and the outputs of the n adders are 

sequentially sampled to yield the binary code symbols or coded bits. These code symbols are 

then used by the modulator to specify the waveforms to be transmitted over the channel. Since 

there are n coded bits for each input group of k message bits, the code rate is k/n message bit 

per coded bit, where k < n. 

   

 We shall consider only the most commonly used binary convolutional encoders for which k = 

1, that is, those encoders in which the message bits are shifted into the encoder one bit at a 

time, although generalization to higher-order alphabets is straightforward [1, 2]. For the k = 1 

encoder, at the ith unit of time, message bit mi is shifted into the first shift register stage; all 

previous bits in the register are shifted one stage to the right, and as in the more general case, 

the outputs of the n adders are sequentially sampled and transmitted. Since there are n coded 

bits for each message bit, the code rate is l/n. The n code symbols occurring at time ti comprise 

the ith branch word, Ui = u1ib, … , uji , … , uni ,  where uji (j = 1, 2, . . ., n) is the jth code symbol 

belonging to the ith branch word. Note that for the rate l/n encoder, the kK-stage shift register 

can be referred to simply as a K-stage register, and the constraint length K, which was 

expressed in units of k-tuple stages, can be refereed to as constraint length in units of bits. 

 

 

 

 1.2      CONVOLUTIONAL ENCODER PRESENTATION   

 

To describe a convolutional code, one needs to characterize the encoding function G (m), so 

that given an input sequence m, one call readily compute the output sequence U. Several 

methods are used for representing a convolutional encoder, the most popular being the 

connection pictorial, connection vectors or polynomials, the state diagram the tree diagram 

and the trellis diagram. Some of them will be discussed below. 
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1.2.1 Connection Representation 
 

We shall use the convolutional encoder, shown in Figure 1.3, as a model for discussing 

convolutional encoders. The figure illustrates a (2, 1) convolutional encoder with constraint 

length K = 3. There are n = 2 modulo-2 adders; thus he code rate k/n is 1/2. At each input bit 

time, a bit is shifted into the leftmost stage and the bits in the register are shifted one 

position to the right. Next, the output switch samples the output of each modulo-2 adder 

(i.e., first the upper adder, then the lower adder), thus forming the code symbol pair making 

up the branch word associated with the bit just inputted. The sampling is repealed for each 

inputted bit. The choice of connections between the adders and the stages of the register 

gives rise to the characteristics of the code. Any change in the choice of connections results 

in a different code. The connections are, of course, not chosen or changed arbitrarily. The 

problem of choosing connections to yield good distance properties is complicated and has 

not been solved in general; however, good codes have been found by computer search for all 

constraint lengths less than about 20. 

 

 

Figure 1.3   A simple rate ½ convolutional code encoder. 

(The rectangular box represents one element of a serial shift register.) 

 

 

 

Unlike a block code that has a fixed word length n, a convolutional code has no particular 

block size. However, convolutional codes are often forced into a block structure by periodic  

 

truncation. This requires a number of zero bits to be appended to the end of the input data 
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sequence, for the purpose of clearing or flushing the encoding shift register of the data bits. 

Since the added zeros carry no information, the effective code rate falls below k/n. To keep 

the code rate close to kln, the truncation period is generally made as long as practical. 

 

One way to represent the encoder is to specify a set of n connection vectors, one for each of 

the n modulo-2 adders. Each vector has dimension K and describes the connection of the 

encoding shift register to that modulo-2 adder. A one in the ith position of the vector indicates 

that the corresponding stage in the shift register is connected to the modulo-2 adder, and a 

zero in a given position indicates that no connection exists between the stage and the 

modulo-2 adder. For the encoder example in Figure 1.3, we call write the connection vector g1 

for the upper connections find g2 for the lower connections as follows: 
 
 
                                g1 = 1 1 1 
                                  
      g2 = 1 0 1 
 
 

Consider that a message vector m = 1 0 1 is convohltionally encoded with the encoder shown 

in Figure 1.3. The three message bits are inputted, one at a time, at times t1, t2, and t 3, as 

shown in Figure 1.4. Subsequently, (K - 1) = 2 zeros are inputted at times t4 and t5 to flush the 

register and thus ensure that the tail end of the message is shifted the full length of the 

register. The output sequence is seen to be 1110001011, where the leftmost symbol represents 

the earliest transmission. The entire output sequence, including the code symbols as a result of 

flushing, are needed to decode the message. To flush the message from the encoder requires 

one less zero than the number of stages in the register, or K - I flush bits. Another zero input is 

shown at time t6, for the reader to verify that the corresponding branch word output is then 00. 

 

 

1.2.2 Impulse Response of the Encoder 
 

We can approach the encoder in terms of its impulse response—that is, the response of the 

encoder to a single "one" bit that moves through it. Consider he contents of the register in 

Figure 1.3 as a one moves through it. 
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Input sequence:       1          0          1 

Output sequence:   1 1       1 0       1 1     

 
The output sequence for the input ''one" is called the impulse response of the encoder. Then 

for the input sequence m = 1 0 1, the output may be found by the superposition or the lineal 

addition of the time-shifted input "impulses” as follows: 

 

           
 

 

 

 

   

 

Observe that this is the same output as that obtained in Figure 1.4, demonstrating that 

convolutional codes are linear. It is from this property of generating the output by the linear 

addition of time shifted impulses, or the convolution of the input sequence with the impulse re-

sponse of the encoder, that we derive thc name convolutional encoder. Often, this encoder 

characterization is presented in terms of an infinite-order generator matrix [6]. 
 

Notice that the effective code rate for the foregoing example with 3-bit input sequence and 

10-bit output sequence is k/n = 3/10—quite a bit less than the rate 1/2 that might have been 

expected from the knowledge that each input data bit yields a pair of output channel bits. 

The reason for the disparity is that the final data bit into the encoder needs to be shifted 

through the encoder. All of the output channel bits are needed in the decoding process. If the 

message had been longer, say 300 bits, the output codeword sequence would contain 604  
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bits, resulting in a code rate of 300/604—much closer to 1/2. 

 

Figure 1.4    Convolutional encoding a 
message sequence with a rate ½ , K = 3 
encoder. 
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1.2.2.1 Polynomial Presentation 
 

 

Sometimes, the encoder connections are characterized by generator polynomials. We can 

represent a convolutional encoder with a set of n generator polynomials, one for each of the n 

modulo-2 adders. Each polynomial is of degree K - 1 or less and describes the connection of 

the encoding shift register to that modulo-2 adder, much the same way that a connection 

vector does. The coefficient of each term in the (K – 1)-degree polynomial is either 1 or 0, 

depending on whether a connection exists or does not exist between the shift register and the 

modulo-2 adder in question- For the encoder example in Figure 1.3, we can write the 

generator polynomial g1(X) for the upper connections and g2(X) for the lower connections as 

follows: 

 

where the lowest-order term in the polynomial corresponds to the input stags of the register. 

The output sequence is found as follows: 
 

U (X) = m (X) g1(X) interlaced with m(X)g2(X) 
 

First, express the message vector m = 1  0  1 as a polynomial—that is, m(X) =1 + X2. We 

shall again assume the use of zeros following the message bits, to flush the register. Then the 

output polynomial, U (X), or the output sequence, U, of the Figure 1.3 encoder can be found 

for the input message m as follows: 

 

 

                          m(X)g1(X) = (1  +  X2)(1  +  X  +  X2) = 1  +  X  +  X3  +  X4 

                          m(X)g2(X) = (1  +  X2)(1  +  X2) = 1  +  X4 

 

                            m(X)g1(X) =   1  +   X  +  0X2  +  X3  +  X4 

                            m(X)g1(X) =   1  + 0X  +  0X2  +  X3  +  X4 

 

                            U (X) =  (1,1)  +  (1,0) X  +  (0,0) X2  +  (1,0) X3  +  (1,1) X4  

 

In this example we started with another point of view—that the convolutional encoder can be 
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treated as a set of cyclic code shift registers. We represented the encoder with polynomial 

generators as used for describing cyclic codes. However, we arrived at the same output 

sequence as in Figure 1.4 and the same output sequence as the impulse response treatment of 

the preceding section. For a good presentation of convolutional code structure in the context 

of linear sequential circuits. 

 

 
 

 

1.2.3 State Representation and the state diagram 

 
The state of a rate l/n convolutional encoder is defined as the contents of the rightmost K-1 

stages (see Figure 1.3). Knowledge of the state together with Knowledge of the next input is 

necessary and sufficient to determine the next output. Let the state of the encoder at time, ti, 

be defined as  Xi = mi-1 , mi-2 , ……. , mi-k+1. The ith codeword branch, Ui, is completely 

determined by state Xi and the present input bit m,; thus the state Xi represents the past history 

of the encoder in determining the encoder output. The encoder state is said to be Markov, in 

the sense that the probability, P (Xi+1|Xi , Xi-1 , . . ., X0), of being n state Xi+ 1, given all 

previous states, depends only on the most recent state, of,; that is, the probability is equal to P 

(Xi+1|Xi ).One way to represent simple encoders is with a state diagram such a representation 

for the encoder in Figure 1.3 is shown in Figure 1.5. The states, shown in the boxes of the 

diagram, represent the possible contents of the rightmost K - 1 stages of the register, and the 

paths between the states represent the output branch words resulting from such state 

transitions. The states of the register are designated a = 00, b = 10, c = 01, and d = 11; the 

diagram shown in Figure 1.5 illustrates all the state transitions that are possible for the 

encoder in Figure 1.3. There are only two transitions emanating from each state corresponding 

to the two possible input bits. Next to each path between states is written the output branch 

word associated with the state transitions. In drawing the path, we use the convention that a 

solid line denotes a path associated with an input bit, zero, and a dashed line denotes a path 

associated with an input bit,one. Notice that it is not possible in a single transition to move 

from a given state to any arbitrary state. As a consequence of shifting-in one bit at a time, 

there are only two possible state transitions that the register can make at each bit time- For 

example, if the present encoder state is 00, the only possibilities for the state at the next shift  
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are 00 or 10. 
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Figure 1.5     Encoder state diagram (rate ½ , K = 3) 
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1.2.4 The Tree Diagram 
 

Although the state diagram completely characterizes the encoder, one cannot easily use it for 

tracking the encoder transitions as a function of time since the diagram cannot represent time 

history. The tree diagram adds the dimension of time to the state diagram. The tree diagram for 

the convolutional encoder shown in Figure 1.3 is illustrated in Figure 1.5. At each successive 

input bit time the encoding procedure can be described by traversing the diagram from left to 

right, each tree branch describing an output branch word.  
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Figure 1.6    Tree representation of 
encoder (rate ½, K  = 3) 
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The branching rule for finding a codeword sequence is as follows: if the input bit is a zero, 

its associated branch word is found by moving to the next rightmost branch in the upward 

direction. If the input bit is a one its branch word is found by moving to the next rightmost 

branch in the downward direction. Assuming that the initial contents of the encoder is all 

zeros, the diagram shows that if the first input bit is a zero, the output branch word is 00 and, 

if the first input bit is a one, the output branch word is 11. Similarly, if the first input bit is a 

one and the second input bit is a zero, the second output branch word is 10. Or, if the first 

input bit is a one and the second input bit is a one, the second output branch word is 01.  

Following this procedure we see that the input sequence 11011 traces the heavy line drawn 

on the tree diagram in Figure 1.5. This path corresponds to the following output codeword 

sequence: 1101010001. 
 

The added dimension of time in the tree diagram (compared to the state diagram) allows one to 

dynamically describe the encoder as a function of a particular input sequence. However, can 

you see one problem in trying to use a tree diagram for describing a sequence of any length? 

The numbers of branches increases as a function of 2L, where L is the number of bits in the 

input sequence. You would quickly run out of paper, and patience. 

 

 

1.2.5 The Trillis Diagram 

 
Observation of the Figure 1.6 tree diagram shows that for this example, the structure repeats 

itself at time t4, after the third branching (in general, the tree structure repeats after-K 

branchings, where K is the constraint length). We label each node in the tree of Figure 1.6 to 

correspond to the four possible states in the shift register, as follows: a = 00, b = 10, c = 01, 

and d = 11. The first branching of the tree structure, at time t1, produces a pair of nodes labeled 

a and b. At each successive branching the number of nodes double The second branching, at 

time t2. Results in four nodes labeled a, b, c, and d. After the third branching there are a total of 

eight nodes; two of them are labeled a, two are labeled b, two are labeled c, and two are 

labeled d.We can see that all branches emanating from two nodes of the same state generate 

identical branch word sequences. From this point on, the upper and the lower halves of the tree 

are identical. The reason for this should be obvious from examination of the encoder in Figure  
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1.3. As the fourth input bit enters the encoder on the left, the first input bit is ejected on the 

right and no longer influences the output branch words. Consequently, the input sequences  

100 x y . . . and 000 x y… , where the leftmost bit is the earliest bit, generate tl1c same branch 

words after the (K = 3)rd branching. This means that any two nodes having the same state 

label, al the same time ti, can be merged since all succeeding paths will be indistinguishably. If 

we do this to the tree structure of Figure 1.6, we obtain another diagram called the trellis. The 

trellis diagram, by exploiting the repetitive structure, provides a more manageable encoder 

description than does the tree diagram. The trellis diagram for the convolutional encoder of 

Figure 6.3 is shown in Figure 6.7. 
 

 

Figure 1.7     Encoder trellis diagram (rate ½ , K = 3) 

 

 

In drawing the trellis diagram, we use the same convention that we introduced with the state 

diagram—that a solid line denotes the output generated by an input bit, zero, and a dashed 

line denotes the output generated by an input bit, one. The nodes of the trellis characterize 

the encoder states; the first row nodes correspond to the state a = 00, the second and 

subsequent rows correspond to the states b = 10, c = 01, and d = 11. At each unit of time the 

trellis requires 2K- 1 nodes to represent the 2K-1 possible encoder states. The trellis in our ex-

ample assumes a fixed periodic structure after trellis depth 3 is reached (at time t4). In the  
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general case, the fixed structure prevails after depth K is reached. After this point, each of 

the states can be entered from either of two preceding states. Also, each of the states can 

transition to one of two states. Of the two outgoing branches, one corresponds to an input bit 

zero and the other corresponds to an input bit one. On Figure 1.7 the output branch words 

corresponding to the state transitions appear as labels on the trellis branches. 

 

 

 
 

1.3  FORMATION OF  

       THE CONVOLUTIONAL DECODING PROBLEM 

 
1.3.1 Maximum Likelihood Decoding 
 

If all input message sequences are equally likely, a decoder that achieves the minimum 

probability of error is one that compares the conditional probabilities, also called the likelihood 

functions, P (Z|U(m)), where Z is the received sequence and U(m) is one of the possible 

transmitted sequences, and chooses the maximum. The decoder chooses U(m) if 

 

P (Z|U(m’)) = max P (Z|U(m))      for all U(m)               (1.1) 

 

The maximum likelihood concept, as stated in Equation (1.1), is a fundamental development of 

decision theory, it is the formalization of a “common-sense” way to make decisions when there 

is statistical knowledge of the possibilities. In the binary demodulation there were only two 

equally likely possible signals, s1(t) or s2(t), that might have been transmitted. Therefore, to 

make the binary maximum likelihood decision. Given a received signal, meant only to decide 

that s1(t) was transmitted if 

p (z|s1)    >   p (z|s2) 

 

Otherwise, to decide that s2(t) was transmitted. The parameter z represents z(t), the receiver 

output at a symbol duration time t = T. However, when applying maximum likelihood to the 

convolutional decoding problem, there is typically a multitude of possible codeword  
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sequences that might have been transmitted. To be specific, an L-bit codeword sequence is a 

member of a set of 2L possible sequences. Therefore, in the maximum likelihood context, we 

can say that the decoder chooses a particular U(m’)as the transmitted sequence if the 

likelihood P (Z|U(m’)) is greater than the likelihood of all the other possible transmitted 

sequences. Such an optimal decoder, which minimizes the error probability (for he case 

where all transmitted sequences are equally likely), is known as a maximum likelihood 

decoder. The likelihood functions are given or computed from he specifications of the 

channel. 
 

We will assume that the noise is additive white Gaussian with zero mean and the channel is 

memoryless which means that the noise affects each code symbol independently of all the 

other symbols. For a convolutional code of rate 1/n, we can therefore express the likelihood, P 

(Z|U(m)) as follows: 

 

where Zi is the ith branch of the received sequence Z. Ui
(m)  is the ith branch of a particular 

codeword sequence Ui
(m), zji the jth code symbol of Zi, and uji

(m)  the jth code symbol of Ui
(m), 

each branch comprising n code symbols. The decoder problem consists of choosing a path 

through the trellis of Figure 1.7 (each possible path defines a codeword) such that 

 

 

Generally, it is computationally more convenient to use the logarithm of the likelihood 

function since this permits the summation, instead of the multiplication of terms. We are able 

to use this transformation because the logarithm is a monotonically increasing function and 

thus will not alter the final result in our codeword selection. We can define the log-likelihood 

function γU(m) as 
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The decoder problem now consists of choosing a path through the tree of Figure 1.6 or the 
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trellis of Figure 1.7 such that γU(m) is maximized. For the decoding of convolutional codes, 

either the tree or the trellis structure can be used. In the tree representation of the code, the 

fact that the paths remerge is ignored. Since the number of possible sequences for an 

L-symbol-long sequence is 2L, maximum likelihood decoding of an L-bit-long received 

sequence, using a tree diagram, requires the “brute force” or exhaustive comparison of 2L 

accumulated log-likelihood metrics, representing all the possible different codewords that 

could have been transmitted. Hence it is not practical to consider maximum likelihood de-

coding with a tree structure. It is shown in a later section that with the use of the trellis 

representation of the code, it is possible to configure a decoder which can discard the paths 

that could not possibly be candidates for the maximum likelihood sequence. The decoded path 

is chosen from some reduced set of surviving paths. Such a decoder is still optimum in the 

sense that the decoded path is the same as the decoded path obtained from a "brute force" 

maximum likelihood decoder, but the early rejection of unlikely paths reduces the decoding 

complexity. 
 

 

There are several algorithms that yield approximate solutions to the maximum likelihood 

decoding problem, including sequential and threshold. Each of these algorithms is suited to 

certain special applications, but are all suboptimal. In contrast, the Viterbi decoding 

algorithm performs maximum likelihood decoding and is therefore optimal. This does not 

imply that the Viterbi algorithm is best for every application; there are severe constraints 

imposed by hardware complexity. The Viterbi algorithm is considered in Sections 1.3.3 and 

1.3.4. 

 

 

1.3.2 Channel Models: Hard versus Soft Decisions 
 

Before specifying an algorithm that will determine the maximum likelihood decision, let us 

describe the channel. The codeword sequence U(m), made up of branch words, with each 

branch word comprised of n code symbols, can be considered tan endless stream, as opposed 

to a block code, in which the source data and their codewords are partitioned into precise 

block sizes. The codeword sequence shown in Figure 1.1 emanates from the convolutional  

 

encoder and enters the modulator, where the code symbols are transformed into signal 
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waveforms The modulation may be baseband (e.g., pulse waveforms) or bandpass (e.g., PSK 

or FSK). In general, l symbols at a lime, where l is an integer, are mapped into signal 

waveforms si(t), where i = 1, 2, . . ., M = 2l. When l = 1, the modulator maps each code 

symbol into a binary waveform. The channel over which the waveform is transmitted is 

assumed to corrupt the signal with Gaussian noise. When the corrupted signal is received, it is 

first processed by the demodulator and then by the decoder. 
 

Consider that a binary signal, transmitted over a symbol interval (0, T), is represented by s1(t) 

for a binary one and s2(t) for a binary zero. The received signal is r(t) = si(t) + n(t), where n(t) 

is a zero-mean Gaussian noise process.  The detection of r(t) is described in terms of two 

basic steps. In the first step, the received waveform is reduced to a single number. z(T)= ai + 

no, where a, is the signal component of z(T) and no is the noise component. The noise 

component, no, is a zero-mean Gaussian random variable, and thus z(T) is a Gaussian 

random variable with a mean of either a1 or a2 depending on whether a binary one or binary 

zero was sent. In the second step of the detection process a decision was made as to which 

signal was transmitted, on the basis of comparing z(T) to a threshold. The conditional 

probabilities of z(T), p(z|s1) and p(z|s2) are shown in Figure 1.8, labeled likelihood of s1 and 

likelihood of s2. The demodulator in Figure 1.1, converts the set of time-ordered random 

variables. {z(T)}, into a code sequence, Z, and passes it on to the decoder. The demodulator  

 

Figure 1.8     Hard and soft decoding decisions. 

 

output can be configured in a variety of ways.   It can be implemented to make a  firm of hard 

decision as to whether z(T) represents a zero or a one. In this case, the output of the 
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demodulator is quantized to two levels, zero and one, and fed into the decoder. Since the 

decoder operates on the hard decisions made by the demodulator, the decoding is called 

hard-decision decoding. 

 

The demodulator can also be configured to feed the decoder with a quantized value of z(T) 

greater that two levels, or with an unquantized or analog value of z(T). Such an 

implementation furnishes the decoder with more information than is provided in the 

hard-decision case. When the quantization level of the demodulator output is greater than 

two, the decoding is called soft-decision decoding. Eight levels (3-bits) of quantization are 

illustrated on the abscissa of Figure 1.8. When the demodulator sends a hard binary decision 

to the decoder, it sends it a single binary symbol. When the demodulator sends a soft binary 

decision, quantized to eight levels, it sends the decoder a 3-bit word describing an interval 

along z(T). In effect, sending such a 3-bit word in place of a single binary symbol is 

equivalent to sending the decoder a measure of confidence along with the code symbol. 

Referring to Figure 1.8, if the demodulator sends 1 1 1 to the decoder, this is tantamount to 

declaring the code symbol to be a one with very high confidence, while sending a 1 0 0 is 

tantamount to declaring the code symbol to be a one with very low confidence. It should be 

clear that ultimately, every message decision out of the decoder must be a hard decision; 

otherwise, one might see computer printouts that read: ''think it's a 1," "think it's a 0," and so 

on. The idea behind the demodulator not making hard decisions and sending more data (soft 

decisions) to the decoder can be thought of as an interim step to provide the decoder with 

more information, which the decoder then uses for recovering the message sequence (with 

better error performance than it could in the case of hard decision decoding).  
 

For a Gaussian channel, eight-level quantization results in a performance improvement of 

approximately 2 dB in required signal-to-noise ratio compared to two-level quantization. This 

means that eight-level soft-decision decoding can provide the same probability of bit error as 

that of hard-decision decoding, but requires 2 dB less Eb/No for the same performance. Analog 

(or infinite-level quantization) results in a 2.2-dB performance improvement over two-level 

quantization; therefore, eight-level quantization results in a loss of approximately 0.2 dB  

 

compared to infinitely fine quantization. For this reason, quantization to more than eight 

levels can yield little performance improvement. What price is paid for such improved 

soft-decision-decoder performance? In the case of hard decision decoding, a single bit is used 
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to describe each code symbol, while for eight-level quantized soft-decision decoding 3 bits are 

used to describe each code symbol; therefore, three times the amount of data must be handled 

during the decoding process. Hence the price paid for soft-decision decoding is an increase in 

required memory size at the decoder (and possibly a speed penalty). 
 

Block decoding algorithms and convolutional decoding algorithms have been devised to 

operate with hard or soft decisions. However, soft-decision decoding is generally not used 

with block codes because it is considerably more difficult than hard-decision decoding to 

implement. The most prevalent use of soft-decision decoding is with the Viterbi 

Convolutional decoding algorithm, since with Viterbi decoding, soft decisions represent 

only a trivial increase in computation. 

 

 

 

 

1.3.2.1 Binary Symmetric Channel 

 
A binary symmetric channel (BSC) is a discrete memoryless that has binary input and output 

alphabets and symmetric transition probabilities. It can be described by the conditional 

probabilities 

                                                            P(0|1) = P(1|0) = p 
(1.5) 

                                                            P(1|1) = P(0|0) = 1-p 

 
as illustrated in Figure 1.9. The probability that an output symbol will differ from the input 

symbol is p, and the probability that the output symbol will be identical to the input symbol is 

(1 - p). The BSC is an example of a hard decision channel, which means that, even though 

continuous-valued signals may be received by the demodulator, a BSC allows only firm 

decisions such that each demodulator output symbol, zji, as shown in Figure 1.1, consists of 

one of two binary values. The indexing of zji pertains to the jth code symbol of the ith branch 

word. Zi. The demodulator then feeds the sequence Z = {Zi} to the decoder. 
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Figure 1.9      Formulation of the convolutional Decoding Problem 

 

 

Let U(m) be a transmitted codeword over a BSC with symbol error probability p, and let Z be 

the corresponding received decoder sequence. As noted' previously, a maximum likelihood 

decoder chooses the codeword U(m’) which > maximizes the likelihood, P(Z|U(m)) or its 

logarithm. For a BSC, this is equivalent to choosing the codeword, U(m’), that is closest in 

Hamming distance to Z. Thus Hamming distance is an appropriate metric to describe the 

distance or closeness of fit between U(m) and Z. From all the possible transmitted sequences, 

U(m), the decoder chooses the U(m’) sequence for which the distance to Z is minimum. 

Suppose that U(m) and Z are each L-bit-long sequences and that they differ in dm positions 

[i.e., the Hamming distance between Used and Z is dm]. Then, since the channel is assumed 

memoryless, the probability that this U(m) was transformed to the specific received Z at 

distance dm from it can be written 

 

           

                                                         P (Z|U(m)) = pdm (1 – p)L-dm                                            (1.6) 

And the log-likelihood function is 

 

                                   Log P (Z|U(m)) = - dm  log { (1 – p)/p } +  L log (1 – p)                      (1.7) 

 

If we compute this quantity for each possible transmitted sequence, the second term will be 

constant in each case. Assuming that p < 0.5, we can express Equation (1.7) as 
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                                                  Log P (Z|U(m))  =  - A dm  -  B                                               (1.8) 

 

where A and B are positive constants. Therefore, choosing the codeword U(m’) such that the 

Hamming distance, dm , to the received sequence Z is minimized corresponds to maximizing  

the likelihood or log likelihood metrics. Consequently, over a BSC, the log-likelihood metric 

is conveniently replaced by the Hamming distance, and a maximum likelihood decoder will 

choose, in the tree or trellis diagram, the path whose corresponding sequence, U(m’), is at the 

minimum Hamming distance to the received sequence Z. 

 

 

 

 

1.3.2.2 Gaussian Channel 

 
For a Gaussian channel, each demodulator output symbol, zji, as shown in Figure 1. 1, is a 

value from a continuous alphabet. The symbol zji cannot be labeled as a correct or incorrect 

detection decision. Sending the decoder such sop decisions can be viewed as sending a family 

of conditional probabilities of the different symbols. It can be shown that maximizing 

P(Z|U(m)) is equivalent to maximizing the inner product between the codeword sequence, U(m) 

(consisting of binary symbols), and the analog-valued received sequence, Z. Thus the decoder 

chooses the codeword U(m’) if it maximizes 
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This is equivalent to choosing the codeword User that is closest in Euclidean distance to Z. 

Even though the hard- and soft-decision channels require different metrics, the concept of 

choosing the codeword U(m’) that is closest to the received sequence, Z. is the same in both 

cases. To implement the maximization of Equation (1.9) exactly, the decoder would have to  

 

be able to handle analog-valued arithmetic operations. This is impractical because the decoder 

is generally implemented digitally. Thus it is necessary to quantize the received symbols zji. 

Equation (1.9) is the discrete version of correlating an input received waveform, r(t), with a 
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reference waveform, si(t). The quantized Gaussian channel, typically referred to as a 

soft-decision channel, is the channel model assumed for the soft-decision decoding described 

earlier. 

 

 

 

1.3.3 The Viterbi Convolutional Decoding Algorithm 
 

The Viterbi decoding algorithm was discovered and analyzed by Viterbi in 1967. The Viterbi 

algorithm essentially performs maximum likelihood decoding; however, it reduces the 

computational load by taking advantage of the special structure in the code trellis. The 

advantage of Viterbi decoding, compared with brute-force decoding, is that the complexity of 

a Viterbi decoder is not a function of the number of symbols in the codeword sequence. The 

algorithm involves calculating a measure of similarity, or distance between the received 

signal, at time ti, and all the trellis paths entering each state at time ti. The Viterbi algorithm 

removes from consideration those trellis paths that could not possibly be candidates for the 

maximum likelihood choice. When two paths enter the same state, the one having the best 

metric is chosen; this path is called the surviving path. This selection of surviving paths is 

performed for all the states. The decoder continues in this way to advance deeper into the 

trellis, making decisions by eliminating the least likely paths. The early rejection of the 

unlikely paths reduces the decoding complexity. In 1969, Omura demonstrated that the 

Viterbi algorithm is, in fact, maximum likelihood. Note that the goal of selecting the optimum 

path can be expressed, equivalently, as choosing the codeword with the maximum likelihood 

metric or as choosing the codeword with the minimum distance metric. 
 

 

 

1.3.4 Path Memory and Synchronization 

 
 

The storage requirements of the Viterbi decoder grow exponentially with constraint length 

K. For a code with rate l/n, the decoder retains a set of 2K-1 paths after each decoding step. 

With high probability, these paths will not be mutual disjoint very far back from the present 
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decoding depth. All of the 2K-1 paths tend to have a common stem, which eventually 

branches to the various states. Thus if the decoder stores enough of the history of the 2K-1 

paths, the oldest bits on all paths will be the same. A simple decoder implementation, then, 

contains a fixed amount of path history and outputs the oldest bit on an arbitrary path each 

time it steps one level deeper into the trellis. The amount of path storage required, u, is  

 

                                                          u  =  h 2k-1                                                         (1.10) 

 

where h is the length of the information bit path history per state. A refinement, which 

minimizes the value of h, uses the oldest bit on the most likely path as the decoder output, 

instead of the oldest bit on au arbitrary path. It has been demonstrated that a value of h of 4 or 

5 times the code constraint length is sufficient for near-optimum decoder performance. The 

storage requirement, In is the basic limitation on the implementation of Viterbi decoders. The 

current state of the art admits decoders to a constraint length of about K = 10. Efforts to 

increase coding gain by further increasing constraint length are met by the exponential 

increased in memory requirements (and complexity) that follows from Equation (1.10). 

 

Branch word synchronization is the process of determining the beginning of e a branch word 

in the received sequence. Such synchronization can take place without new information 

being added to the transmitted symbol stream because the received data appear to have an 

excessive error rate when not synchronized. Therefore, a simple way of accomplishing 

synchronization is to monitor some concomitant indication of this large error rate, that is, the 

rate at which the path d metrics are increasing or the rate at which the surviving paths in the 

trellis merge. The monitored parameters are compared to a threshold, and synchronization is 

then adjusted accordingly. 
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