
Chapter1 - Channel Coding and Viterbi Algorithm

Chapter 1

Channel Coding and Viterbi

Algorithm

There are two major categories of channel codes: block and convolutional. This chapter deals

mainly with convolutional coding. A linear block code is described by two integers, n and k,

and a generator matrix or polynomial. The integer k is the number of data bits that form an

input to a block encoder. The integer n is the total number of bits in the associated codeword

out of the encoder. A characteristic of linear block codes is that each codeword n-tuple is

uniquely determined by the input message k-tuple. The ratio kln is called the rate of the code

— a measure of the amount of added redundancy. A convolutional code is described by three

integers, n, k, and K, where the ratio k/n has the same code rate significance (information per

coded bit) that it has for block codes; however, n does not define a block or codeword length as

it does for block codes. The integer K is a parameter known as the constraint length; it

represents the number of k-tuple stages in the encoding shift register. An important

characteristic of convolutional codes, different from block codes, is that the encoder has

 1

Chapter1 - Channel Coding and Viterbi Algorithm

memory — the n-tuple emitted by the convolutional encoding procedure is not only a function

of an input k-tuple, but is also a function of the previous K - 1 input k-tuples. In practice, n and

k are small integers and K is varied to control the redundancy.

1.1 CONVOLUTIONAL ENCODING

Figure 1.1 represents the block diagram of a convolutional encode/decode and

modulator/demodulator part in a typical communication link. The input message source is

denoted by the sequence m = m1, m2, ……… , mi , …… , where each mi represents a

binary digit (bit). We shall assume that each mi is equally likely to be a one or a zero, and

independent from digit to digit. Being independent, the bit sequence lacks any redundancy;

that is, knowledge about bit mi gives no information about mj (i ≠ j). The encoder transforms

each sequence m into a unique codeword sequence U = G (m). Even though the sequence m

uniquely defines the sequence U, a key feature of convolutional codes is that a given k-tuple

 m

,....,.......,, 21 immmm))))
=

)}({ tsi
)

)}({ tsi,....,.......,, 21 immm=

Z = Z1, Z2,….., Zi ,…

Where Zi = z1ib, … , zji , … , zni
and zji is the jth demodulator output
symbol of branch word Zi

Input sequence

U = G (m)
 = U1, U2, ... , Ui ,
 Codeword sequence
Where Ui = u1ib, … , uji , … , uni

Information
source

Convolutional
decode

Demodulate

AWGN
channel

Modulate Convolutional
encode

Information
source

 Figure 1.1 Encode/decode and modulator/demodulator part in a typical communication link.

 2

Chapter1 - Channel Coding and Viterbi Algorithm

within m does not uniquely define its associated n-tuple within U since the encoding of each

k-tuple is not only a function of that k-tuple but is also a function of the K - 1 input k-tuples

that precede it. The sequence U can be partitioned into a sequence of branch words: U = U1,

U2, ... , Ui , Each branch word Ui is made up of binary code symbols, often called channel

symbols, channel bits, or coded bits; unlike the input message bits the code symbols are not

independent.

In a typical communication application, the codeword sequence U modulates a waveform

s(t). During transmission, the waveform s(t) is corrupted by noise, resulting in a received

waveform s(t) and a demodulated sequence Z = Z1, Z2, . . . , Zi , . . . , as indicated in Figure

1.1. The task of the decoder is to produce an estimate , f the

original message sequence, using the received sequence Z together with a priori knowledge

of the encoding procedure.

,....mmmm = o,.......,, 21 i
))))

A general convolutional encoder, shown in figure 1.2, is mechanized with a kK-stage shift

register and n modulo-2 adders, where K is the constraint length. The constraint length

Codeword sequence U1, U2, ... , Ui ,
where Ui = u1ib, … , uji , … , uni
 = ith codeword branch
 uji = jth binary code symbol of

branch word Ui

1n modulo-2
adders

kK-stage
shift register Input sequence

(shifted in k at a time)

1 m = m1,m2,…,mi,…

1 2 3 ……………. kK

++ +
1 2

……………. n

Figure 1.2 Convolutional encoder with constraint length K and rate k/n.

represents the number of k-bit shifts over which a single information bit can influence the

 3

Chapter1 - Channel Coding and Viterbi Algorithm

encoder output. At each unit of time, k bits are shifted into the first k stages of the register; all

bits in the register are shifted k stages to the right, and the outputs of the n adders are

sequentially sampled to yield the binary code symbols or coded bits. These code symbols are

then used by the modulator to specify the waveforms to be transmitted over the channel. Since

there are n coded bits for each input group of k message bits, the code rate is k/n message bit

per coded bit, where k < n.

 We shall consider only the most commonly used binary convolutional encoders for which k =

1, that is, those encoders in which the message bits are shifted into the encoder one bit at a

time, although generalization to higher-order alphabets is straightforward [1, 2]. For the k = 1

encoder, at the ith unit of time, message bit mi is shifted into the first shift register stage; all

previous bits in the register are shifted one stage to the right, and as in the more general case,

the outputs of the n adders are sequentially sampled and transmitted. Since there are n coded

bits for each message bit, the code rate is l/n. The n code symbols occurring at time ti comprise

the ith branch word, Ui = u1ib, … , uji , … , uni , where uji (j = 1, 2, . . ., n) is the jth code symbol

belonging to the ith branch word. Note that for the rate l/n encoder, the kK-stage shift register

can be referred to simply as a K-stage register, and the constraint length K, which was

expressed in units of k-tuple stages, can be refereed to as constraint length in units of bits.

 1.2 CONVOLUTIONAL ENCODER PRESENTATION

To describe a convolutional code, one needs to characterize the encoding function G (m), so

that given an input sequence m, one call readily compute the output sequence U. Several

methods are used for representing a convolutional encoder, the most popular being the

connection pictorial, connection vectors or polynomials, the state diagram the tree diagram

and the trellis diagram. Some of them will be discussed below.

 4

Chapter1 - Channel Coding and Viterbi Algorithm

1.2.1 Connection Representation

We shall use the convolutional encoder, shown in Figure 1.3, as a model for discussing

convolutional encoders. The figure illustrates a (2, 1) convolutional encoder with constraint

length K = 3. There are n = 2 modulo-2 adders; thus he code rate k/n is 1/2. At each input bit

time, a bit is shifted into the leftmost stage and the bits in the register are shifted one

position to the right. Next, the output switch samples the output of each modulo-2 adder

(i.e., first the upper adder, then the lower adder), thus forming the code symbol pair making

up the branch word associated with the bit just inputted. The sampling is repealed for each

inputted bit. The choice of connections between the adders and the stages of the register

gives rise to the characteristics of the code. Any change in the choice of connections results

in a different code. The connections are, of course, not chosen or changed arbitrarily. The

problem of choosing connections to yield good distance properties is complicated and has

not been solved in general; however, good codes have been found by computer search for all

constraint lengths less than about 20.

Figure 1.3 A simple rate ½ convolutional code encoder.

(The rectangular box represents one element of a serial shift register.)

Unlike a block code that has a fixed word length n, a convolutional code has no particular

block size. However, convolutional codes are often forced into a block structure by periodic

truncation. This requires a number of zero bits to be appended to the end of the input data

 5

Chapter1 - Channel Coding and Viterbi Algorithm

sequence, for the purpose of clearing or flushing the encoding shift register of the data bits.

Since the added zeros carry no information, the effective code rate falls below k/n. To keep

the code rate close to kln, the truncation period is generally made as long as practical.

One way to represent the encoder is to specify a set of n connection vectors, one for each of

the n modulo-2 adders. Each vector has dimension K and describes the connection of the

encoding shift register to that modulo-2 adder. A one in the ith position of the vector indicates

that the corresponding stage in the shift register is connected to the modulo-2 adder, and a

zero in a given position indicates that no connection exists between the stage and the

modulo-2 adder. For the encoder example in Figure 1.3, we call write the connection vector g1

for the upper connections find g2 for the lower connections as follows:

 g1 = 1 1 1

 g2 = 1 0 1

Consider that a message vector m = 1 0 1 is convohltionally encoded with the encoder shown

in Figure 1.3. The three message bits are inputted, one at a time, at times t1, t2, and t 3, as

shown in Figure 1.4. Subsequently, (K - 1) = 2 zeros are inputted at times t4 and t5 to flush the

register and thus ensure that the tail end of the message is shifted the full length of the

register. The output sequence is seen to be 1110001011, where the leftmost symbol represents

the earliest transmission. The entire output sequence, including the code symbols as a result of

flushing, are needed to decode the message. To flush the message from the encoder requires

one less zero than the number of stages in the register, or K - I flush bits. Another zero input is

shown at time t6, for the reader to verify that the corresponding branch word output is then 00.

1.2.2 Impulse Response of the Encoder

We can approach the encoder in terms of its impulse response—that is, the response of the

encoder to a single "one" bit that moves through it. Consider he contents of the register in

Figure 1.3 as a one moves through it.

 6

Chapter1 - Channel Coding and Viterbi Algorithm

Input sequence: 1 0 1

Output sequence: 1 1 1 0 1 1

The output sequence for the input ''one" is called the impulse response of the encoder. Then

for the input sequence m = 1 0 1, the output may be found by the superposition or the lineal

addition of the time-shifted input "impulses” as follows:

Observe that this is the same output as that obtained in Figure 1.4, demonstrating that

convolutional codes are linear. It is from this property of generating the output by the linear

addition of time shifted impulses, or the convolution of the input sequence with the impulse re-

sponse of the encoder, that we derive thc name convolutional encoder. Often, this encoder

characterization is presented in terms of an infinite-order generator matrix [6].

Notice that the effective code rate for the foregoing example with 3-bit input sequence and

10-bit output sequence is k/n = 3/10—quite a bit less than the rate 1/2 that might have been

expected from the knowledge that each input data bit yields a pair of output channel bits.

The reason for the disparity is that the final data bit into the encoder needs to be shifted

through the encoder. All of the output channel bits are needed in the decoding process. If the

message had been longer, say 300 bits, the output codeword sequence would contain 604

 7

Chapter1 - Channel Coding and Viterbi Algorithm

bits, resulting in a code rate of 300/604—much closer to 1/2.

Figure 1.4 Convolutional encoding a
message sequence with a rate ½ , K = 3
encoder.

 8

Chapter1 - Channel Coding and Viterbi Algorithm

1.2.2.1 Polynomial Presentation

Sometimes, the encoder connections are characterized by generator polynomials. We can

represent a convolutional encoder with a set of n generator polynomials, one for each of the n

modulo-2 adders. Each polynomial is of degree K - 1 or less and describes the connection of

the encoding shift register to that modulo-2 adder, much the same way that a connection

vector does. The coefficient of each term in the (K – 1)-degree polynomial is either 1 or 0,

depending on whether a connection exists or does not exist between the shift register and the

modulo-2 adder in question- For the encoder example in Figure 1.3, we can write the

generator polynomial g1(X) for the upper connections and g2(X) for the lower connections as

follows:

where the lowest-order term in the polynomial corresponds to the input stags of the register.

The output sequence is found as follows:

U (X) = m (X) g1(X) interlaced with m(X)g2(X)

First, express the message vector m = 1 0 1 as a polynomial—that is, m(X) =1 + X2. We

shall again assume the use of zeros following the message bits, to flush the register. Then the

output polynomial, U (X), or the output sequence, U, of the Figure 1.3 encoder can be found

for the input message m as follows:

 m(X)g1(X) = (1 + X2)(1 + X + X2) = 1 + X + X3 + X4

 m(X)g2(X) = (1 + X2)(1 + X2) = 1 + X4

 m(X)g1(X) = 1 + X + 0X2 + X3 + X4

 m(X)g1(X) = 1 + 0X + 0X2 + X3 + X4

 U (X) = (1,1) + (1,0) X + (0,0) X2 + (1,0) X3 + (1,1) X4

In this example we started with another point of view—that the convolutional encoder can be

 9

Chapter1 - Channel Coding and Viterbi Algorithm

treated as a set of cyclic code shift registers. We represented the encoder with polynomial

generators as used for describing cyclic codes. However, we arrived at the same output

sequence as in Figure 1.4 and the same output sequence as the impulse response treatment of

the preceding section. For a good presentation of convolutional code structure in the context

of linear sequential circuits.

1.2.3 State Representation and the state diagram

The state of a rate l/n convolutional encoder is defined as the contents of the rightmost K-1

stages (see Figure 1.3). Knowledge of the state together with Knowledge of the next input is

necessary and sufficient to determine the next output. Let the state of the encoder at time, ti,

be defined as Xi = mi-1 , mi-2 , ……. , mi-k+1. The ith codeword branch, Ui, is completely

determined by state Xi and the present input bit m,; thus the state Xi represents the past history

of the encoder in determining the encoder output. The encoder state is said to be Markov, in

the sense that the probability, P (Xi+1|Xi , Xi-1 , . . ., X0), of being n state Xi+ 1, given all

previous states, depends only on the most recent state, of,; that is, the probability is equal to P

(Xi+1|Xi).One way to represent simple encoders is with a state diagram such a representation

for the encoder in Figure 1.3 is shown in Figure 1.5. The states, shown in the boxes of the

diagram, represent the possible contents of the rightmost K - 1 stages of the register, and the

paths between the states represent the output branch words resulting from such state

transitions. The states of the register are designated a = 00, b = 10, c = 01, and d = 11; the

diagram shown in Figure 1.5 illustrates all the state transitions that are possible for the

encoder in Figure 1.3. There are only two transitions emanating from each state corresponding

to the two possible input bits. Next to each path between states is written the output branch

word associated with the state transitions. In drawing the path, we use the convention that a

solid line denotes a path associated with an input bit, zero, and a dashed line denotes a path

associated with an input bit,one. Notice that it is not possible in a single transition to move

from a given state to any arbitrary state. As a consequence of shifting-in one bit at a time,

there are only two possible state transitions that the register can make at each bit time- For

example, if the present encoder state is 00, the only possibilities for the state at the next shift

 10

Chapter1 - Channel Coding and Viterbi Algorithm

are 00 or 10.

 00

 Input bit 0

 Input bit 1

Encoder
state

01

11

01

11

ac = 01 ab= 00

ad = 11

aa = 00

Figure 1.5 Encoder state diagram (rate ½ , K = 3)
10

1.2.4 The Tree Diagram

Although the state diagram completely characterizes the encoder, one cannot easily use it for

tracking the encoder transitions as a function of time since the diagram cannot represent time

history. The tree diagram adds the dimension of time to the state diagram. The tree diagram for

the convolutional encoder shown in Figure 1.3 is illustrated in Figure 1.5. At each successive

input bit time the encoding procedure can be described by traversing the diagram from left to

right, each tree branch describing an output branch word.

 11

Chapter1 - Channel Coding and Viterbi Algorithm

10

01
d10

01 d

11 b

10

01 d

c

a

b

c01

00

11

10

11

00

01

10

11

00

d

c

b

a

c

b

a

10

11

01

11

00

01

10

00

11

10

01

11

00

Crowded
branch

a
0

11 b

a00

a

b

c

d01

10

11

00

01

10

11

00

01

10

11

00

d

c

b

a

d

c

b

a

10

00

11

01

11

00

01

10

00

11

10

01

11

00

01

10

00

00 a

1

Figure 1.6 Tree representation of
encoder (rate ½, K = 3)

At1 At2 At3 At4 At5

 12

Chapter1 - Channel Coding and Viterbi Algorithm

The branching rule for finding a codeword sequence is as follows: if the input bit is a zero,

its associated branch word is found by moving to the next rightmost branch in the upward

direction. If the input bit is a one its branch word is found by moving to the next rightmost

branch in the downward direction. Assuming that the initial contents of the encoder is all

zeros, the diagram shows that if the first input bit is a zero, the output branch word is 00 and,

if the first input bit is a one, the output branch word is 11. Similarly, if the first input bit is a

one and the second input bit is a zero, the second output branch word is 10. Or, if the first

input bit is a one and the second input bit is a one, the second output branch word is 01.

Following this procedure we see that the input sequence 11011 traces the heavy line drawn

on the tree diagram in Figure 1.5. This path corresponds to the following output codeword

sequence: 1101010001.

The added dimension of time in the tree diagram (compared to the state diagram) allows one to

dynamically describe the encoder as a function of a particular input sequence. However, can

you see one problem in trying to use a tree diagram for describing a sequence of any length?

The numbers of branches increases as a function of 2L, where L is the number of bits in the

input sequence. You would quickly run out of paper, and patience.

1.2.5 The Trillis Diagram

Observation of the Figure 1.6 tree diagram shows that for this example, the structure repeats

itself at time t4, after the third branching (in general, the tree structure repeats after-K

branchings, where K is the constraint length). We label each node in the tree of Figure 1.6 to

correspond to the four possible states in the shift register, as follows: a = 00, b = 10, c = 01,

and d = 11. The first branching of the tree structure, at time t1, produces a pair of nodes labeled

a and b. At each successive branching the number of nodes double The second branching, at

time t2. Results in four nodes labeled a, b, c, and d. After the third branching there are a total of

eight nodes; two of them are labeled a, two are labeled b, two are labeled c, and two are

labeled d.We can see that all branches emanating from two nodes of the same state generate

identical branch word sequences. From this point on, the upper and the lower halves of the tree

are identical. The reason for this should be obvious from examination of the encoder in Figure

 13

Chapter1 - Channel Coding and Viterbi Algorithm

1.3. As the fourth input bit enters the encoder on the left, the first input bit is ejected on the

right and no longer influences the output branch words. Consequently, the input sequences

100 x y . . . and 000 x y… , where the leftmost bit is the earliest bit, generate tl1c same branch

words after the (K = 3)rd branching. This means that any two nodes having the same state

label, al the same time ti, can be merged since all succeeding paths will be indistinguishably. If

we do this to the tree structure of Figure 1.6, we obtain another diagram called the trellis. The

trellis diagram, by exploiting the repetitive structure, provides a more manageable encoder

description than does the tree diagram. The trellis diagram for the convolutional encoder of

Figure 6.3 is shown in Figure 6.7.

Figure 1.7 Encoder trellis diagram (rate ½ , K = 3)

In drawing the trellis diagram, we use the same convention that we introduced with the state

diagram—that a solid line denotes the output generated by an input bit, zero, and a dashed

line denotes the output generated by an input bit, one. The nodes of the trellis characterize

the encoder states; the first row nodes correspond to the state a = 00, the second and

subsequent rows correspond to the states b = 10, c = 01, and d = 11. At each unit of time the

trellis requires 2K- 1 nodes to represent the 2K-1 possible encoder states. The trellis in our ex-

ample assumes a fixed periodic structure after trellis depth 3 is reached (at time t4). In the

 14

Chapter1 - Channel Coding and Viterbi Algorithm

general case, the fixed structure prevails after depth K is reached. After this point, each of

the states can be entered from either of two preceding states. Also, each of the states can

transition to one of two states. Of the two outgoing branches, one corresponds to an input bit

zero and the other corresponds to an input bit one. On Figure 1.7 the output branch words

corresponding to the state transitions appear as labels on the trellis branches.

1.3 FORMATION OF

 THE CONVOLUTIONAL DECODING PROBLEM

1.3.1 Maximum Likelihood Decoding

If all input message sequences are equally likely, a decoder that achieves the minimum

probability of error is one that compares the conditional probabilities, also called the likelihood

functions, P (Z|U(m)), where Z is the received sequence and U(m) is one of the possible

transmitted sequences, and chooses the maximum. The decoder chooses U(m) if

P (Z|U(m’)) = max P (Z|U(m)) for all U(m) (1.1)

The maximum likelihood concept, as stated in Equation (1.1), is a fundamental development of

decision theory, it is the formalization of a “common-sense” way to make decisions when there

is statistical knowledge of the possibilities. In the binary demodulation there were only two

equally likely possible signals, s1(t) or s2(t), that might have been transmitted. Therefore, to

make the binary maximum likelihood decision. Given a received signal, meant only to decide

that s1(t) was transmitted if

p (z|s1) > p (z|s2)

Otherwise, to decide that s2(t) was transmitted. The parameter z represents z(t), the receiver

output at a symbol duration time t = T. However, when applying maximum likelihood to the

convolutional decoding problem, there is typically a multitude of possible codeword

 15

Chapter1 - Channel Coding and Viterbi Algorithm

sequences that might have been transmitted. To be specific, an L-bit codeword sequence is a

member of a set of 2L possible sequences. Therefore, in the maximum likelihood context, we

can say that the decoder chooses a particular U(m’)as the transmitted sequence if the

likelihood P (Z|U(m’)) is greater than the likelihood of all the other possible transmitted

sequences. Such an optimal decoder, which minimizes the error probability (for he case

where all transmitted sequences are equally likely), is known as a maximum likelihood

decoder. The likelihood functions are given or computed from he specifications of the

channel.

We will assume that the noise is additive white Gaussian with zero mean and the channel is

memoryless which means that the noise affects each code symbol independently of all the

other symbols. For a convolutional code of rate 1/n, we can therefore express the likelihood, P

(Z|U(m)) as follows:

where Zi is the ith branch of the received sequence Z. Ui
(m) is the ith branch of a particular

codeword sequence Ui
(m), zji the jth code symbol of Zi, and uji

(m) the jth code symbol of Ui
(m),

each branch comprising n code symbols. The decoder problem consists of choosing a path

through the trellis of Figure 1.7 (each possible path defines a codeword) such that

Generally, it is computationally more convenient to use the logarithm of the likelihood

function since this permits the summation, instead of the multiplication of terms. We are able

to use this transformation because the logarithm is a monotonically increasing function and

thus will not alter the final result in our codeword selection. We can define the log-likelihood

function γU(m) as

C CC
∞

=

∞

= =

==
1 1 1

)()()()|()|()|(
i i

n

j

m
jiji

m
ii

m uzPUZPUZP

(2.2)

I is maximized (3.2)

(1.4) ∑ ∑∑
∞

=

∞

= =

===
1 1 1

)()()|(log)|(log)|(log)(
i i

n

j
jiji

m
ii

m
U uzPUZPUZPmγ

CC
∞

= =1 1

)()|(
i

n

j

m
jiji uzP

The decoder problem now consists of choosing a path through the tree of Figure 1.6 or the

 16

Chapter1 - Channel Coding and Viterbi Algorithm

trellis of Figure 1.7 such that γU(m) is maximized. For the decoding of convolutional codes,

either the tree or the trellis structure can be used. In the tree representation of the code, the

fact that the paths remerge is ignored. Since the number of possible sequences for an

L-symbol-long sequence is 2L, maximum likelihood decoding of an L-bit-long received

sequence, using a tree diagram, requires the “brute force” or exhaustive comparison of 2L

accumulated log-likelihood metrics, representing all the possible different codewords that

could have been transmitted. Hence it is not practical to consider maximum likelihood de-

coding with a tree structure. It is shown in a later section that with the use of the trellis

representation of the code, it is possible to configure a decoder which can discard the paths

that could not possibly be candidates for the maximum likelihood sequence. The decoded path

is chosen from some reduced set of surviving paths. Such a decoder is still optimum in the

sense that the decoded path is the same as the decoded path obtained from a "brute force"

maximum likelihood decoder, but the early rejection of unlikely paths reduces the decoding

complexity.

There are several algorithms that yield approximate solutions to the maximum likelihood

decoding problem, including sequential and threshold. Each of these algorithms is suited to

certain special applications, but are all suboptimal. In contrast, the Viterbi decoding

algorithm performs maximum likelihood decoding and is therefore optimal. This does not

imply that the Viterbi algorithm is best for every application; there are severe constraints

imposed by hardware complexity. The Viterbi algorithm is considered in Sections 1.3.3 and

1.3.4.

1.3.2 Channel Models: Hard versus Soft Decisions

Before specifying an algorithm that will determine the maximum likelihood decision, let us

describe the channel. The codeword sequence U(m), made up of branch words, with each

branch word comprised of n code symbols, can be considered tan endless stream, as opposed

to a block code, in which the source data and their codewords are partitioned into precise

block sizes. The codeword sequence shown in Figure 1.1 emanates from the convolutional

encoder and enters the modulator, where the code symbols are transformed into signal

 17

Chapter1 - Channel Coding and Viterbi Algorithm

waveforms The modulation may be baseband (e.g., pulse waveforms) or bandpass (e.g., PSK

or FSK). In general, l symbols at a lime, where l is an integer, are mapped into signal

waveforms si(t), where i = 1, 2, . . ., M = 2l. When l = 1, the modulator maps each code

symbol into a binary waveform. The channel over which the waveform is transmitted is

assumed to corrupt the signal with Gaussian noise. When the corrupted signal is received, it is

first processed by the demodulator and then by the decoder.

Consider that a binary signal, transmitted over a symbol interval (0, T), is represented by s1(t)

for a binary one and s2(t) for a binary zero. The received signal is r(t) = si(t) + n(t), where n(t)

is a zero-mean Gaussian noise process. The detection of r(t) is described in terms of two

basic steps. In the first step, the received waveform is reduced to a single number. z(T)= ai +

no, where a, is the signal component of z(T) and no is the noise component. The noise

component, no, is a zero-mean Gaussian random variable, and thus z(T) is a Gaussian

random variable with a mean of either a1 or a2 depending on whether a binary one or binary

zero was sent. In the second step of the detection process a decision was made as to which

signal was transmitted, on the basis of comparing z(T) to a threshold. The conditional

probabilities of z(T), p(z|s1) and p(z|s2) are shown in Figure 1.8, labeled likelihood of s1 and

likelihood of s2. The demodulator in Figure 1.1, converts the set of time-ordered random

variables. {z(T)}, into a code sequence, Z, and passes it on to the decoder. The demodulator

Figure 1.8 Hard and soft decoding decisions.

output can be configured in a variety of ways. It can be implemented to make a firm of hard

decision as to whether z(T) represents a zero or a one. In this case, the output of the

 18

Chapter1 - Channel Coding and Viterbi Algorithm

demodulator is quantized to two levels, zero and one, and fed into the decoder. Since the

decoder operates on the hard decisions made by the demodulator, the decoding is called

hard-decision decoding.

The demodulator can also be configured to feed the decoder with a quantized value of z(T)

greater that two levels, or with an unquantized or analog value of z(T). Such an

implementation furnishes the decoder with more information than is provided in the

hard-decision case. When the quantization level of the demodulator output is greater than

two, the decoding is called soft-decision decoding. Eight levels (3-bits) of quantization are

illustrated on the abscissa of Figure 1.8. When the demodulator sends a hard binary decision

to the decoder, it sends it a single binary symbol. When the demodulator sends a soft binary

decision, quantized to eight levels, it sends the decoder a 3-bit word describing an interval

along z(T). In effect, sending such a 3-bit word in place of a single binary symbol is

equivalent to sending the decoder a measure of confidence along with the code symbol.

Referring to Figure 1.8, if the demodulator sends 1 1 1 to the decoder, this is tantamount to

declaring the code symbol to be a one with very high confidence, while sending a 1 0 0 is

tantamount to declaring the code symbol to be a one with very low confidence. It should be

clear that ultimately, every message decision out of the decoder must be a hard decision;

otherwise, one might see computer printouts that read: ''think it's a 1," "think it's a 0," and so

on. The idea behind the demodulator not making hard decisions and sending more data (soft

decisions) to the decoder can be thought of as an interim step to provide the decoder with

more information, which the decoder then uses for recovering the message sequence (with

better error performance than it could in the case of hard decision decoding).

For a Gaussian channel, eight-level quantization results in a performance improvement of

approximately 2 dB in required signal-to-noise ratio compared to two-level quantization. This

means that eight-level soft-decision decoding can provide the same probability of bit error as

that of hard-decision decoding, but requires 2 dB less Eb/No for the same performance. Analog

(or infinite-level quantization) results in a 2.2-dB performance improvement over two-level

quantization; therefore, eight-level quantization results in a loss of approximately 0.2 dB

compared to infinitely fine quantization. For this reason, quantization to more than eight

levels can yield little performance improvement. What price is paid for such improved

soft-decision-decoder performance? In the case of hard decision decoding, a single bit is used

 19

Chapter1 - Channel Coding and Viterbi Algorithm

to describe each code symbol, while for eight-level quantized soft-decision decoding 3 bits are

used to describe each code symbol; therefore, three times the amount of data must be handled

during the decoding process. Hence the price paid for soft-decision decoding is an increase in

required memory size at the decoder (and possibly a speed penalty).

Block decoding algorithms and convolutional decoding algorithms have been devised to

operate with hard or soft decisions. However, soft-decision decoding is generally not used

with block codes because it is considerably more difficult than hard-decision decoding to

implement. The most prevalent use of soft-decision decoding is with the Viterbi

Convolutional decoding algorithm, since with Viterbi decoding, soft decisions represent

only a trivial increase in computation.

1.3.2.1 Binary Symmetric Channel

A binary symmetric channel (BSC) is a discrete memoryless that has binary input and output

alphabets and symmetric transition probabilities. It can be described by the conditional

probabilities

 P(0|1) = P(1|0) = p
(1.5)

 P(1|1) = P(0|0) = 1-p

as illustrated in Figure 1.9. The probability that an output symbol will differ from the input

symbol is p, and the probability that the output symbol will be identical to the input symbol is

(1 - p). The BSC is an example of a hard decision channel, which means that, even though

continuous-valued signals may be received by the demodulator, a BSC allows only firm

decisions such that each demodulator output symbol, zji, as shown in Figure 1.1, consists of

one of two binary values. The indexing of zji pertains to the jth code symbol of the ith branch

word. Zi. The demodulator then feeds the sequence Z = {Zi} to the decoder.

 20

Chapter1 - Channel Coding and Viterbi Algorithm

Transition probabilities

1-p

Received
signals

1-p

0

1

Transmitted
signals

0

 1

Figure 1.9 Formulation of the convolutional Decoding Problem

Let U(m) be a transmitted codeword over a BSC with symbol error probability p, and let Z be

the corresponding received decoder sequence. As noted' previously, a maximum likelihood

decoder chooses the codeword U(m’) which > maximizes the likelihood, P(Z|U(m)) or its

logarithm. For a BSC, this is equivalent to choosing the codeword, U(m’), that is closest in

Hamming distance to Z. Thus Hamming distance is an appropriate metric to describe the

distance or closeness of fit between U(m) and Z. From all the possible transmitted sequences,

U(m), the decoder chooses the U(m’) sequence for which the distance to Z is minimum.

Suppose that U(m) and Z are each L-bit-long sequences and that they differ in dm positions

[i.e., the Hamming distance between Used and Z is dm]. Then, since the channel is assumed

memoryless, the probability that this U(m) was transformed to the specific received Z at

distance dm from it can be written

 P (Z|U(m)) = pdm (1 – p)L-dm (1.6)

And the log-likelihood function is

 Log P (Z|U(m)) = - dm log { (1 – p)/p } + L log (1 – p) (1.7)

If we compute this quantity for each possible transmitted sequence, the second term will be

constant in each case. Assuming that p < 0.5, we can express Equation (1.7) as

 21

Chapter1 - Channel Coding and Viterbi Algorithm

 Log P (Z|U(m)) = - A dm - B (1.8)

where A and B are positive constants. Therefore, choosing the codeword U(m’) such that the

Hamming distance, dm , to the received sequence Z is minimized corresponds to maximizing

the likelihood or log likelihood metrics. Consequently, over a BSC, the log-likelihood metric

is conveniently replaced by the Hamming distance, and a maximum likelihood decoder will

choose, in the tree or trellis diagram, the path whose corresponding sequence, U(m’), is at the

minimum Hamming distance to the received sequence Z.

1.3.2.2 Gaussian Channel

For a Gaussian channel, each demodulator output symbol, zji, as shown in Figure 1. 1, is a

value from a continuous alphabet. The symbol zji cannot be labeled as a correct or incorrect

detection decision. Sending the decoder such sop decisions can be viewed as sending a family

of conditional probabilities of the different symbols. It can be shown that maximizing

P(Z|U(m)) is equivalent to maximizing the inner product between the codeword sequence, U(m)

(consisting of binary symbols), and the analog-valued received sequence, Z. Thus the decoder

chooses the codeword U(m’) if it maximizes

(1.9) ∑∑
∞

= =1 1

)(

i

n

j

m
jijiuz

This is equivalent to choosing the codeword User that is closest in Euclidean distance to Z.

Even though the hard- and soft-decision channels require different metrics, the concept of

choosing the codeword U(m’) that is closest to the received sequence, Z. is the same in both

cases. To implement the maximization of Equation (1.9) exactly, the decoder would have to

be able to handle analog-valued arithmetic operations. This is impractical because the decoder

is generally implemented digitally. Thus it is necessary to quantize the received symbols zji.

Equation (1.9) is the discrete version of correlating an input received waveform, r(t), with a

 22

Chapter1 - Channel Coding and Viterbi Algorithm

reference waveform, si(t). The quantized Gaussian channel, typically referred to as a

soft-decision channel, is the channel model assumed for the soft-decision decoding described

earlier.

1.3.3 The Viterbi Convolutional Decoding Algorithm

The Viterbi decoding algorithm was discovered and analyzed by Viterbi in 1967. The Viterbi

algorithm essentially performs maximum likelihood decoding; however, it reduces the

computational load by taking advantage of the special structure in the code trellis. The

advantage of Viterbi decoding, compared with brute-force decoding, is that the complexity of

a Viterbi decoder is not a function of the number of symbols in the codeword sequence. The

algorithm involves calculating a measure of similarity, or distance between the received

signal, at time ti, and all the trellis paths entering each state at time ti. The Viterbi algorithm

removes from consideration those trellis paths that could not possibly be candidates for the

maximum likelihood choice. When two paths enter the same state, the one having the best

metric is chosen; this path is called the surviving path. This selection of surviving paths is

performed for all the states. The decoder continues in this way to advance deeper into the

trellis, making decisions by eliminating the least likely paths. The early rejection of the

unlikely paths reduces the decoding complexity. In 1969, Omura demonstrated that the

Viterbi algorithm is, in fact, maximum likelihood. Note that the goal of selecting the optimum

path can be expressed, equivalently, as choosing the codeword with the maximum likelihood

metric or as choosing the codeword with the minimum distance metric.

1.3.4 Path Memory and Synchronization

The storage requirements of the Viterbi decoder grow exponentially with constraint length

K. For a code with rate l/n, the decoder retains a set of 2K-1 paths after each decoding step.

With high probability, these paths will not be mutual disjoint very far back from the present

 23

Chapter1 - Channel Coding and Viterbi Algorithm

decoding depth. All of the 2K-1 paths tend to have a common stem, which eventually

branches to the various states. Thus if the decoder stores enough of the history of the 2K-1

paths, the oldest bits on all paths will be the same. A simple decoder implementation, then,

contains a fixed amount of path history and outputs the oldest bit on an arbitrary path each

time it steps one level deeper into the trellis. The amount of path storage required, u, is

 u = h 2k-1 (1.10)

where h is the length of the information bit path history per state. A refinement, which

minimizes the value of h, uses the oldest bit on the most likely path as the decoder output,

instead of the oldest bit on au arbitrary path. It has been demonstrated that a value of h of 4 or

5 times the code constraint length is sufficient for near-optimum decoder performance. The

storage requirement, In is the basic limitation on the implementation of Viterbi decoders. The

current state of the art admits decoders to a constraint length of about K = 10. Efforts to

increase coding gain by further increasing constraint length are met by the exponential

increased in memory requirements (and complexity) that follows from Equation (1.10).

Branch word synchronization is the process of determining the beginning of e a branch word

in the received sequence. Such synchronization can take place without new information

being added to the transmitted symbol stream because the received data appear to have an

excessive error rate when not synchronized. Therefore, a simple way of accomplishing

synchronization is to monitor some concomitant indication of this large error rate, that is, the

rate at which the path d metrics are increasing or the rate at which the surviving paths in the

trellis merge. The monitored parameters are compared to a threshold, and synchronization is

then adjusted accordingly.

 24

