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 Chapter 2 
 
 
 
 

ASIC Design Flow 
 
 
 
2.1 INTRODUCTION TO ASICs 
 

 
An ASIC (pronounced “a-sick”; bold typeface defines a new term) is an application-specific 

integrated circuit —at least that is what the acronym stands for. Before we answer the question 

of what that means we first look at the evolution of the silicon chip or integrated circuit ( IC ). 

Figure 2.1(a) shows an IC package (this is a pin-grid array, or PGA, shown upside down; the 

pins will go through holes in a printed-circuit board). People often call the package a chip, but, 

as you can see in Figure 2.1(b), the silicon chip itself (more properly called a die ) is mounted 

in the cavity under the sealed lid. A PGA package is usually made from a ceramic material, but 

plastic packages are also common. 

 

The physical size of a silicon die varies from a few millimeters on a side to over 1 inch on a 

side, but  instead we often measure the size of an IC by the number of logic gates or the number  
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FIGURE 2.1 An integrated circuit (IC). (a)  A pin-grid array (PGA) 

package. (b) The silicon die or chip is under the package lid. 

 

 

of transistors that the  IC contains. As a unit of measure a gate equivalent corresponds to a two-

input NAND gate (a circuit that performs the logic function, F = A • B ). Often we just use the 

term gates instead of gate equivalents when we are measuring chip size—not to be confused 

with the gate terminal of a transistor. For example, a 100 k-gate IC contains the equivalent of 

100,000 two-input NAND gates.  

 

A modern submicron CMOS process is now just as complicated as a submicron bipolar or BiCMOS (a 

combination of bipolar and CMOS) process. However, CMOS ICs have established a dominant 

position, are manufactured in much greater volume than any other technology, and therefore, because of 

the economy of scale, the cost of CMOS ICs is less than a bipolar or BiCMOS IC for the same function. 

Bipolar and BiCMOS ICs are still used for special needs. For example, bipolar technology is generally 

capable of handling higher voltages than CMOS. This makes bipolar and BiCMOS ICs useful in power 

electronics, cars, telephone circuits, and so on. 

 

With the advent of VLSI in the 1980s engineers began to realize the advantages of designing an IC that 

was customized or tailored to a particular system or application rather than using standard ICs alone. 
Microelectronic system design then becomes a matter of defining the functions that you can implement 
using standard ICs and then implementing the remaining logic functions (sometimes called glue logic ) 

with one or more custom ICs . As VLSI became possible you could build a system from a smaller 

number of components by combining many standard ICs into a few custom ICs. Building a 

microelectronic system with fewer ICs allows you to reduce cost and improve reliability. 

 

 

 26



Chapter2 –  ASIC Design Flow 

2.2  Design Flow 

 
Figure 2.2 shows the sequence of steps to design an ASIC; we call this a design flow . The 

steps are listed below (numbered to correspond to the labels in Figure 1.10) with a brief 

description of the function of each step. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 2.2 ASIC design flow. 

 
 
 

1. Design entry. Enter the design into an ASIC design system, either using a hardware 

description language ( HDL ) or schematic entry .  

2. Logic synthesis. Use an HDL (VHDL or Verilog) and a logic synthesis tool to produce 

a netlist —a description of the logic cells and their connections.  

3. System partitioning. Divide a large system into ASIC-sized pieces.  

4. Prelayout simulation. Check to see if the design functions correctly.  

5. Floorplanning. Arrange the blocks of the netlist on the chip.  

6. Placement. Decide the locations of cells in a block.  

7. Routing. Make the connections between cells and blocks.  

8. Extraction. Determine the resistance and capacitance of the interconnect.  
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9. Postlayout simulation. Check to see the design still works with the added loads of the 

interconnect. 

 

Steps 1–4 are part of logical design , and steps 5–9 are part of physical design . There is 

some overlap. For example, system partitioning might be considered as either logical or 

physical design. To put it another way, when we are performing system partitioning we 

have to consider both logical and physical factors. 

 

 

2.3 ASIC Cell Libraries 

 
The cell library is the key part of ASIC design. For non-programable ASIC you have three 

choices: the ASIC vendor (the company that will build your ASIC) will supply a cell library, or 

you can buy a cell library from a third-party library vendor , or you can build your own cell 

library. 

 

However created, each cell in an ASIC cell library must contain the following: 

 

� A physical layout  

� A behavioral model  

� A Verilog/VHDL model  

� A detailed timing model  

� A test strategy  

� A circuit schematic  

� A cell icon  

� A wire-load model  

� A routing model 
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2.4 Viterbi Decoder Project Design 

 
This section describes an ASIC design for a Viterbi decoder using hardware descriptive 

language as a method for design entry. 

 

 

2.4.1 Viterbi Encoder 

 
Viterbi encoding is widely used for satellite and other noisy communications channels. There 

are two important components of a channel using Viterbi encoding: the Viterbi encoder (at the 

transmitter) and the Viterbi decoder (at the receiver). A Viterbi encoder includes extra 

information in the transmitted signal to reduce the probability of errors in the received signal 

that may be corrupted by noise. I shall describe an encoder in which every two bits of a data 

stream are encoded into three bits for transmission. The ratio of input to output information in 

an encoder is the rate of the encoder; this is a rate 2/3 encoder. The following equations relate 

the three encoder output bits (Yn
2 , Yn

1 , and Yn
0 ) to the two encoder input bits (Xn

2 and Xn
1 ) 

at a time nT: 

 

 Yn
2 = Xn

2 

 

 Yn
1 = Xn

1 xor Xn-2
1 

 

 Yn
0 = Xn-1

1  

 

We can write the input bits as a single number. Thus, for example, if Xn
2 = 1 and Xn

2 = 0 , we 

can write Xn = 2 . The state machine with two memory elements; which describes the encoder;  

for the two last input values for Xn
1 : Xn-1

1 and Xn-2
1 . These two state variables define four 

states: {Xn-1
1, Xn-2

1 } , with S0 = { 0, 0}, S1={1, 0}, S2 = {0, 1}, and S3 = {1, 1}. The 3-bit 

output Yn is a function of the state and current 2-bit input Xn . 
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The following comment is that which I have included in my HDL file describing the rate 2/3 

encoder. This model uses two D flip-flops as the state register. When reset (using active-high 

input signal res ) the encoder starts in state S0.  

Notification: In the following comment I represent Yn
2 by Y2N , to be more convineint with the 

HDL syntax. 

 
/*****************************************************************************************************************/ 

/* module viterbi_encode                                                                                                             */ 

/*****************************************************************************************************************/  

 */ This is the encoder. X2N (msb) and X1N form the 2-bit input message, XN. Example: if 

X2N=1, X1N=0, then XN=2. Y2N (msb), Y1N, and Y0N form the 3-bit encoded signal, YN 

(for a total constellation of 8 PSK signals that will be transmitted). The encoder uses a state 

machine with four states to generate the 3-bit output, YN, from the 3-bit input, XN. Example: 

the repeated input sequence XN = (X2N, X1N) = 0,1, 2, 3 produces the repeated output 

sequence YN = (Y2N, Y1N, Y0N) = 1, 0, 5, 4. */ 
**********************************************************************************************************//*******  

 

Figure 11.3 shows the state diagram for this encoder. The first four rows of Table 2.1 show the 

four different transitions that can be made from state S0 . For example, if we reset the encoder 

and the input is Xn = 3 (Xn
2 = 1 and Xn

1 = 1), then the output will be Yn = 6  (Yn
2 = 1 ,  Yn

1 = 1 , 

Yn
0 = 0 ) and the next state will be S1 . 

 

 

 

 

 

 
FIGURE 2.3  A state diagram
for a rate 2/3 Viterbi encoder.
The inputs and outputs are
shown in binary  as Xn

2 Xn
1 /

Yn
2Yn

1Yn
0 , and in decimal as

Xn/ Yn . 

 

 

 

 

 

 

 30



Chapter2 –  ASIC Design Flow 

 

        Outputs   

  Inputs   State variables Yn
2  Yn

1   Yn
0   Next state Present state 

  Xn
2 Xn

1     Xn-1
1   Xn-2

1   Xn
2  = Xn

1 xor Xn-2
1  = Xn-1

1   {Xn-1
1, Xn-2

1}  

S0   0 0   0 0 0 0 0 00 S0 

S0   0 1   0 0 0 1 0 10 S1 

S0   1 0   0 0 1 0 0 00 S0 

S0   1 1   0 0 1 1 0 10 S1 

S1   0 0   1 0 0 0 1 01 S2 

S1   0 1   1 0 0 1 1 11 S3 

S1   1 0   1 0 1 0 1 01 S2 

S1   1 1   1 0 1 1 1 11 S3 

S2   0 0   0 1 0 1 0 00 S0 

S2   0 1   0 1 0 0 0 10 S1 

S2   1 0   0 1 1 1 0 00 S0 

S2   1 1   0 1 1 0 0 10 S1 

S3   0 0   1 1 0 1 1 01 S2 

S3   0 1   1 1 0 0 1 11 S3 

S3   1 0   1 1 1 1 1 01 S2 

S3   1 1   1 1 1 0 1 11 S3 
 

 

TABLE 2.1  State table for the rate 2/3 Viterbi encoder. 

 

 

As an example, the repeated encoder input sequence Xn = 0, 1, 2, 3, ... produces the encoder 

output sequence Yn = 1, 0, 5, 4, ... repeated. Table 2.2 shows the state transitions for this 

sequence, including the initialization steps. 
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FIGURE 2.4   The signal constellation for an 8 PSK (phase-shift keyed) code.  

 

Inputs   State variables  Outputs  Time 

ns Xn
2   Xn

1     Xn-1
1  Xn-2

1    Yn
2  Yn

1  Yn
0   

Present state Next state

0 1 1 x x  1 x x  S? S? 

10 1 1   0 0  1 1 0  S0 S1 

50 0 0   1 0  0 0 1  S1 S2 

150 0 1   0 1  0 0 0  S2 S1 

250 1 0   1 0  1 0 1  S1 S2 

350 1 1   0 1  1 0 0  S2 S1 

450 0 0   1 0  0 0 1  S1 S2 

550 0 1   0 1  0 0 0  S2 S1 

650 1 0   1 0  1 0 1  S1 S2 

750 1 1   0 1  1 0 0  S2 S1 

850 0 0   1 0  0 0 1  S1 S2 

950 0 1   0 1  0 0 0  S2 S1 

  

 

TABLE 2.2    A sequence of transmitted signals for the rate 2/3 Viterbi encoder. 
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Next we transmit the eight possible encoder outputs (Yn = 0-7 ) as signals over our noisy 

communications  channel (perhaps a microwave signal to a satellite) using the signal 

constellation show n in Figure 2.4. Typically this is done using phase-shift keying ( PSK) 

with each signal position corresponding to a different phase shift in the transmitted carrier 

signal. 

 

 

 

 

2.4.2 The Received Signal 

 
The noisy signal enters the receiver. It is now our task to discover which of the eight possible 

signals were transmitted at each time step. First we calculate the distance of each received  

signal from each of the known eight positions in the signal constellation. Table 2.3 shows the 

distances between signals in the 8PSK constellation. We are going to assume that there is no 

noise in the channel to illustrate the operation of the Viterbi decoder, so that the distances in 

Table 2.3 represent the possible distance measures of our received signal from the 8PSK 

signals. 

 

The distances, X, in the first column of Table 2.3 are the geometric or algebraic distances. We 

measure the Euclidean distance, E = X2 shown as B (the binary quantized value of E) in Table 

2.3. The rounding errors that result from conversion to fixed-width binary are quantization 

errors and are important in any practical implementation of the Viterbi decoder. The effect of 

the quantization error is to add a form of noise to the received signal. 

 

The following code models the receiver section that digitizes the noisy analog received signal 

and computes the binary distance measures. Eight binary-distance measures, in0-in7 , are 

generated each time a signal is received. Since each of the distance measures is 3 bits wide, 

there are a total of 24 bits (8 ∞ 3) that form the digital inputs to the Viterbi decoder. 
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Signal 
Algebraic 
distance from 
signal 0 

X = Distance 
from signal 0

Euclidean 
distance 

E = X2 

B = binary 
quantized value 
of E 

D = decimal 
value of B 

Quantization 
error 

Q = D - 1.75 
E 

0 2 sin (0 π / 8)   0.00 0.00 000 0 0   

1 2 sin (1 π / 8)   0.77 0.59 001 1 -0.0325   

2 2 sin (2 π / 8)   1.41 2.00 100 4 0.5   

3 2 sin (3 π / 8)   1.85 3.41 110 6 0.0325   

4 2 sin (4 π / 8)   2.00 4.00 111 7 0   

5 2 sin (5 π / 8)   1.85 3.41 110 6 0.0325   

6 2 sin (6 π / 8)   1.41 2.00 100 4 0.5   

7 2 sin (7 π / 8)   0.77 0.59 001 1 -0.0325   
 

TABLE 2.3    Receiver distance measures for an example transmission sequence. 

 

 

 

/***************************************************************************/ 

 /* Module Viterbi_distances                                                                                                       */ 

 /***************************************************************************/ 

 /* This module simulates the front end of a receiver. Normally the received analog signal (with 

noise) is converted into a series of distance measures from the known eight possible transmitted 

PSK signals: s0,...,s7. We are not simulating the analog part or noise in this version, so we just 

take the digitally encoded 3-bit signal, Y, from the encoder and convert it directly to the 

distance measures. 

 d[N] is the distance from signal = N to signal = 0 

 d[N] = (2*sin(N*PI/8))**2 in 3-bit binary (on the scale 2=100) 

 Example: d[3] = 1.85**2 = 3.41 = 110 

 inN is the distance from signal = N to encoder signal. 

 Example: in3 is the distance from signal = 3 to encoder signal. 

 d[N] is the distance from signal = N to encoder signal = 0. 

 If encoder signal = J, shift the distances by 8-J positions. 
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 Example: if signal = 2, in0 is d[6], in1 is D[7], in2 is D[0], etc. */ 

/***************************************************************************/ 

 

 As an example, Table 2.4 shows the distance measures for the transmitted encoder output 

sequence Yn = 1, 0, 5, 4, ... (repeated) corresponding to an encoder input of Xn = 0, 1, 2, 3, ... 

(repeated). 

 

 

 

Time 

Ns 

Input  

Xn 
Output Yn Present state Next state in0 in1 in2 in3 in4 in5 in6 in7

0 3 x S? S? x x x x x x x x 

10 3 6 S0 S1 4 6 7 6 4 1 0 1 

50 0 1 S1 S2 1 0 1 4 6 7 6 4 

150 1 0 S2 S1 0 1 4 6 7 6 4 1 

250 2 5 S1 S2 6 7 6 4 1 0 1 4 

350 3 4 S2 S1 7 6 4 1 0 1 4 6 

450 0 1 S1 S2 1 0 1 4 6 7 6 4 

550 1 0 S2 S1 0 1 4 6 7 6 4 1 

650 2 5 S1 S2 6 7 6 4 1 0 1 4 

750 3 4 S2 S1 7 6 4 1 0 1 4 6 

850 0 1 S1 S2 1 0 1 4 6 7 6 4 

950 1 0 S2 S1 0 1 4 6 7 6 4 1 
 

TABLE 2.4    Receiver distance measures for an example transmission sequence. 
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2.4.3 Decoder Model 

 
Verilog code for a Viterbi decoder. The decoder assumes a rate 2/3 encoder, 8 PSK modulation, 

and trellis coding. The Viterbi module contains nine submodules: subset_decode, metric, 

compute_metric, compare_select, reduce, pathin, path_memory, and output_decision. The 

decoder accepts eight 3-bit measures of ||r-si||**2 and, after an initial delay of thirteen clock 

cycles, the output is the best estimate of the signal transmitted. The distance measures are the 

Euclidean distances between the received signal r (with noise) and each of the (in this case 

eight) possible transmitted signals s0 to s7.    

 
D Flip Flop 

 

The Viterbi decoder model presented in this section is written for both simulation and 

synthesis. The Viterbi decoder makes extensive use of vector D flip-flops (registers).The used 

flip-flop models supplied with the synthesis tool such as the following: 

 

asDff #(3) subout0(in0, sub0, clk, reset); 

 

The asDff is a model in the Compass ASIC Synthesizer standard component library. This 

statement triggers the synthesis of three D flip-flops, with an input vector ina (with a range of 

three) connected to the D inputs, an output vector sub0 (also with a range of three) connected to 

the Q flip-flop outputs, a common scalar clock signal, clk, and a common scalar reset signal. 

The disadvantage of this approach is that the names, functional behavior, and interfaces of the 

standard components are different for every software system.  

 

 

 /***************************************************************************/ 

 /*       Module dff                                                                                                                         */ 

 /***************************************************************************/ 

 /* A D flip-flop module. */ 

 module dff(D,Q,Clock,Reset); // N.B. reset is active-low. 

 output Q; input D,Clock,Reset; 

 parameter CARDINALITY = 1; reg [CARDINALITY-1:0] Q; 
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 wire [CARDINALITY-1:0] D; 

 always @(posedge Clock) if (Reset !== 0) #1 Q = D; 

 always begin wait (Reset == 0); Q = 0; wait (Reset == 1); end  

 endmodule 

/***************************************************************************/ 

  

 
Figure 2.5 Flow chart describing the behavior of the D flip flop. 

 

 

Viterbi Decoder Submodules 
 
1)  Module Subset_decode                                
 
/***************************************************************************/ 

 /* Module subset_decode                                                                                                           */ 

 /***************************************************************************/ 

 /* This module chooses the signal corresponding to the smallest of each set {||r-s0||**2,||r-

s4||**2}, {||r-s1||**2, ||r-s5||**2}, {||r-s2||**2,||r-s6||**2}, {||r-s3||**2,||r-s7||**2}. Therefore 

 there are eight input signals and four output signals for the distance measures. The signals 

sout0, ..., sout3 are used to control the path memory. The statement dff #(3) instantiates a 

vector array of 3 D flip-flops. */ 

/***************************************************************************/ 
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Figure 2.6 Block diagram of the subset_decode module. 
 
 
 
 
 
 
2) Module Metric 
 
/***************************************************************************/ 

 /*   Module metric                                                                                                                       */ 

 /***************************************************************************/ 

 /* The registers created in this module (using D flip-flops) store the four path metrics. Each 

register is 5 bits wide. The statement dff #(5) instantiates a vector array of 5 flip-flops. */ 

/***************************************************************************/ 

 

Figure 2.7 Block diagram of the metric module. 

 

 

 

 38



Chapter2 –  ASIC Design Flow 

3) Module Compute_metric                             

/***************************************************************************/ 

 /*   Module compute_metric                                                                                                       */ 

 /***************************************************************************/ 

 /* This module computes the sum of path memory and the distance for each path entering a 

state of the trellis. For the four states, there are two paths entering it; therefore eight sums are 

computed in this module. The path metrics and output sums are 5 bits wide. The output sum is 

bounded and should never be greater than 5 bits for a valid input signal. The overflow from the 

sum is the error output and indicates an invalid input signal.*/ 

/***************************************************************************/ 

                           

Figure 2.8 Block diagram of the compute_metric module. 
 

 39



Chapter2 –  ASIC Design Flow 

4) Module Compare_select                             

/***************************************************************************/ 

 /*   Module compare_select                                                                                                        */ 

 /***************************************************************************/ 

 /* This module compares the summations from the compute_metric module and selects the 

metric and path with the lowest value. The output of this module is saved as the new path 

metric for each state. The ACS output signals are used to control the path memory of the 

decoder. */ 

/***************************************************************************/ 

                                  

Figure 2.9 Block diagram of the compare_select module 
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5) Module Path      

/***************************************************************************/ 

 /*   Module path                                                                                                                          */ 

 /***************************************************************************/ 

 /* This is the basic unit for the path memory of the Viterbi decoder. It consists of four 3-bit D 

flip-flops in parallel. There is a 2:1 mux at each D flip-flop input. The statement dff #(12) 

instantiates a vector array of 12 flip-flops. */ 

/***************************************************************************/ 

 

                                     

Figure 2.10 Block diagram of the path module 
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6) Module Path_memory 
 
 
/*************************************************************/ 

/*   Module path_memory                                      */ 

/*************************************************************/ 

/* This module consists of an array of memory elements (D flip-

flops) that store and shift the path memory as new signals are 

added to the four paths (or four most likely sequences of 

signals). This module instantiates 11 instances of the path 

module. */ 

/***************************************************************************/ 

 

Figure 2.11 Block diagram of the path_memory module. 
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7) Module Pathin 

/*************************************************************/ 

/*   Module pathin                                           */ 

/*************************************************************/ 

/* This module determines the input signal to the path for each 

of the four paths. Control signals from the subset decoder and 

compare select modules are used to store the correct signal. 

The statement dff #(12) instantiates a vector array of 12 flip-

flops. */ 

/*************************************************************/ 
 

 

 

 

Figure 2.12 Block diagram of the pathin module. 
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8) Module Output_decision 

/*************************************************************/ 

/*   Module Output_decision                                  */ 

/*************************************************************/ 

/* This module decides the output signal based on the path that 

corresponds to the smallest metric. The control signal comes 

from the reduce module. */ 

/*************************************************************/ 

 

 

 

 

 

 

 

 

 

               
 

Figure 2.13 Block diagram of the output_decision module. 
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9) Module Reduce 
/*************************************************************/ 

/*   Module reduce                                           */ 

/*************************************************************/ 

/* This module reduces the metrics after the addition and 

compare operations. This algorithm selects the smallest metric 

and subtracts it from all the other metrics. */ 

/*************************************************************/ 

 

 

 

 

 

 

 

 

 

                

 
Figure 2.14 Block diagram of the reduce module. 
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2.4.4     Testing The System 

 
Here is a testbench for the entire system: encoder, receiver front end, and decoder: 

/*************************************************************/ 

/* Module viterbi_test_CDD                                   */ 

/*************************************************************/ 

/* This is the top-level module, viterbi_test_CDD that models 

the communications link. It contains three modules: 

viterbi_encode, viterbi_distances, and viterbi. There is no 

analog and no noise in this version. The 2-bit message, X, is 

encoded to a 3-bit signal, Y. In this module the message X is 

generated using a simple counter. The digital 3-bit signal Y is 

transmitted, received with noise as an analog signal (not 

modeled here), and converted to a set of eight 3-bit distance 

measures, in0, ..., in7. The distance measures form the input 

to the Viterbi decoder that reconstructs the transmitted signal 

Y, with an error signal if the measures are inconsistent. CDD = 

counter input, digital transmission, digital reception */ 

/*************************************************************/ 

 

 

The Viterbi decoder takes the distance measures and calculates the most likely transmitted 

signal. It does this by keeping a running history of the previously received signals in a path 

memory. The path-memory length of this decoder is 12. By keeping a history of possible 

sequences and using the knowledge that the signals were generated by a state machine, it is 

possible to select the most likely sequences. 

 

 46



Chapter2 –  ASIC Design Flow 

 

TABLE 2.5  Output from the Viterbi testbench 

 
T    Clk X Y Out Error 
  0  0   3 x x   0 
 50  1   3 x x   0 
 51  1   0 x x   0 
 60  1   0 0 0   0 
100  0   0 0 0   0 
150  1   0 0 0   0 
151  1   1 2 0   0 

 
t    Clk X Y Out Error 
1351 1   1 0 0   0 
1400 0   1 0 0   0 
1450 1   1 0 0   0 
1451 1   2 5 2   0 
1500 0   2 5 2   0 
1550 1   2 5 2   0 
1551 1   3 4 5   0 
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2.5 Simulation Phase 

 
The simulation of this design is carried out in the environment of Mentor Graphics tools, and 

for the first simulation phase I used ModelSim simulator to verify the design behavior using the 

design test bench mentioned in the design phase. A capture of the simulation windows is shown 

in Figure 2.15. 

 

 

 
 

Figure 2.15 Simulation results using the design testbench. 

 
 

 

2.6 Synthesis of the Viterbi Decoder 

 
2.6.1 ASIC I/O 
Some logic synthesizers can include I/O cells automatically, but the designer may have to use 

directives to designate special pads (clock buffers, for example). It may also be necessary to 
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use commands to set I/O cell features such as selection of pull-up resistor, slew rate, and so on. 

Unfortunately there are no standards in this area. Worse, there is currently no accepted way to 

set these parameters from a HDL. Designers may also use either generic technology-

independent I/O models or instantiate I/O cells directly from an I/O cell library. In my project I 

used the Mentor Graphics well known synthesizer Leonardo Spectrum, in which one can 

chose the option (Insert I/O pads). 

 

                                

2.6.2 The Top-Level Model 
 
The synthesizer will take the generic I/O cells and map them to I/O cells from a technology-

specific library (AMS library “cyb”). We do not need three-state I/O cells or bidirectional I/O 

cells for the Viterbi ASIC. Figure 2.16 shows the synthesized Viterbi decoder top view. 

 

                 

 

 
 

Figure 2.16   Synthesis Viterbi decoder  (top level). 

 

 

 

 49



Chapter2 –  ASIC Design Flow 

The design consists of four components (four component files), each has a view point: 

 

1- Viterbi. 

 

 
Figure 2.17    Component1 (Viterbi). 

 

2- Subset_decode. 

 

          
Figure 2.18    Component2(Subset_decode). 
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3- Path 

                 
Figure 2.19    Component3(Path). 

4- Metric 

                          
Figure 2.20    Component4(Metric). 
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After completing this phase, another phase starts which is the layout generation. This phase will 

start with begin with generating a viewpoint for the IC_Station tool of Mentor Graphics, we 

first have to insert the power pads. This is done using the Design Architect tool, which allows 

the designer to insert the power pads inside the schematic applet of the top-level components. 

Figure 2.21 shows the top level schematics generated by the Schematics Generator tool, then 

opened from the Design Architect tool. 

 
 
 

 

Power pads 

 
Figure 2.21    Top level design after power pads insertion manually. 

 

 

 

 
 
2.7 Layout Phase 
 
First step is the automated layout flow involves the IC_Station is creating the layout cell, then 

comes some other steps: 

 

1- Floorplanning (auto). 

2- Place and route (autoplace and route for cells and ports in case of core limited layout plus 

corner cells in case of pad_limited layouts). 

3- Autorouting. 
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By these steps, the layout will be established and surrounded by I/O pads (in case the created 

cell is pad_limited), and without I/O pads (in case the created cell is core_limited, which is the 

case designs included in larger designs and not to be fabricated as a stand alone IC. Figure 2.22 

shows the pad_limited cell representing the layout of the Viterbi decoder IC. 

 

 

            Power pads 

 

 

 

 

 

                    Core 

Power rings 

Corner cell 

I/O pads 
 

I/O  

pads 

I/O  

pads 

 

Figure 2.22    Viterbi decoder layout. 
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2.8 Design Rule Check (DRC) 

 
Sometimes the routing between cells violates the IC design rules, hence we use the design rule 

checker to catch these violations. If such case occurs, then one must fix such errors manually. 

For my design I found no design rules’ errors except in the I/O, which happens to happen, but 

in such case one must not think of fixing these DRC’s because such cells are well designed, 

tested, manufactured and working properly in all the IC’s that used the same library as I did 

(AMS 0.8 micron). 

 

 

Reporting the cell: 

 
1-Layers: 

 
/*************************************************************/ 

Layers Used in Viterbi decoder layout  

/*************************************************************/ 

 

Layer Number       Layer Name 

***************************** 

 1                  NTUB  

 4                  DIFF  

 6                  FIMP  

 10                 POLY1  

 12                 NPLUS  

 13                 PPLUS  

 16                 CONT  

 17                 MET1  

 18                 VIA  

 19                 MET2  
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 20                 PAD  

 22                 CELBOX  

 27                 DIFCUT  

 32                 DIODE  

 38                 RESDEF  

 39                 RESTRM  

 51                 CESIG1  

 52                 CESIG2  

 54                 CETXT  

 60                 TEXT  

 61                 CEPWR1  

 62                 CEPWR2  

 

/*************************************************************/ 

 

 

 

2- Cells:                  Number of library cells used in this design = 1182 cell. 

 

4- Transistors:        Number of transistors in the design = 10370. 

 

5- Design area:       5.5 millimeter square   (without compaction). 

 

 

2.9 Cell Compaction 
 

We can also optimize the design layout area, or simply compacting the cell. This could result in 

extra DRC’s sometimes, but for the current design; it had no extra DRC’s and a compaction 

ratio of about 10%. The new area became equal to 5 millimeter square. 
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2.10 Back Annotation (BA) 

  
It means post simulation that has to be done in order to make sure that delays (component and 

routing delays) didn’t affect the design so far that can result in changing the behavior of it. I 

used QuickSim tool of Mentor Graphics. The simulation results were almost typical to that 

obtained pre to layout implementation, which means that the layout parasitical effects are 

almost negligible. Figure 2.21 shows the simulation results on QuickSim. 

 

 
 

Figure 2.23  Back Annotation results on QuickSim. 

 

 

2.11 Layout Versus Schematics (LVS) 
This phase makes sure that your layout achieves your schematics’ functionality. This operation 

is an automated one, and the result that tells you that the operation has been succeeded is a 

smiling face appears in the output file. The operation succeeded in the Viterbi design. 
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